Random Access Performance of Distributed Sensors Attacked by Unknown Jammers

نویسندگان

  • Dae-Kyo Jeong
  • Jung-Hwa Wui
  • Dongwoo Kim
چکیده

In this paper, we model and investigate the random access (RA) performance of sensor nodes (SN) in a wireless sensor network (WSN). In the WSN, a central head sensor (HS) collects the information from distributed SNs, and jammers disturb the information transmission primarily by generating interference. In this paper, two jamming attacks are considered: power and code jamming. Power jammers (if they are friendly jammers) generate noises and, as a result, degrade the quality of the signal from SNs. Power jamming is equally harmful to all the SNs that are accessing HS and simply induces denial of service (DoS) without any need to hack HS or SNs. On the other hand, code jammers mimic legitimate SNs by sending fake signals and thus need to know certain system parameters that are used by the legitimate SNs. As a result of code jamming, HS falsely allocates radio resources to SNs. The code jamming hence increases the failure probability in sending the information messages, as well as misleads the usage of radio resources. In this paper, we present the probabilities of successful preamble transmission with power ramping according to the jammer types and provide the resulting throughput and delay of information transmission by SNs, respectively. The effect of two jamming attacks on the RA performances is compared with numerical investigation. The results show that, compared to RA without jammers, power and code jamming degrade the throughput by up to 30.3% and 40.5%, respectively, while the delay performance by up to 40.1% and 65.6%, respectively.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Pricing and Power Allocation for Collaborative Jamming with Full Channel Knowledge in Wireless Sensor Networks

This paper presents a price-searching model in which a source node (Alice) seeks friendly jammers that prevent eavesdroppers (Eves) from snooping legitimate communications by generating interference or noise. Unlike existing models, the distributed jammers also have data to send to their respective destinations and are allowed to access Alice's channel if it can transmit sufficient jamming powe...

متن کامل

On Performance Analysis of Protective Jamming Schemes in Wireless Sensor Networks

Wireless sensor networks (WSNs) play an important role in Cyber Physical Social Sensing (CPSS) systems. An eavesdropping attack is one of the most serious threats to WSNs since it is a prerequisite for other malicious attacks. In this paper, we propose a novel anti-eavesdropping mechanism by introducing friendly jammers to wireless sensor networks (WSNs). In particular, we establish a theoretic...

متن کامل

Denial of Service Attack in Distributed Wireless Network by Distributed jammer Network: a Birth-Death Random Process Analysis

Large number of low power, tiny radio jammers are constituting a Distributed Jammer Network (DJN) is used nowadays to cause a Denial of Service (DoS) attack on a Distributed Wireless Network (DWN). Using NANO technologies, it is possible to build huge number of tiny jammers in millions, if not more. The Denial of Service (DoS) attacks in Distributed Wireless Network (DWN) using Distributed Jamm...

متن کامل

Consensus-based Distributed Quickest Detection of Attacks with Unknown Parameters

Sequential attack detection in a distributed estimation system is considered, where each sensor successively produces one-bit quantized samples of a desired deterministic scalar parameter corrupted by additive noise. The unknown parameters in the pre-attack and post-attack models, namely the desired parameter to be estimated and the injected malicious data at the attacked sensors pose a signifi...

متن کامل

Tracking performance of incremental LMS algorithm over adaptive distributed sensor networks

in this paper we focus on the tracking performance of incremental adaptive LMS algorithm in an adaptive network. For this reason we consider the unknown weight vector to be a time varying sequence. First we analyze the performance of network in tracking a time varying weight vector and then we explain the estimation of Rayleigh fading channel through a random walk model. Closed form relations a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2017